
CaesarNeRF: Calibrated Semantic Representation for
Few-Shot Generalizable Neural Rendering

Supplementary Material

In this supplementary material, we provide more de-
tails in addition to the main manuscript, including specifics
of datasets, along with additional analysis and discussions
with visualizations, where we also discuss the GIF exam-
ples attached in the supplementary material.

6. Dataset Details

In this section, we discuss the further details of the datasets
used in our experiments. Our generalizable experimental
settings consist of two different configurations, the details
of which are presented as follows:

(a) LLFF, Shiny, and mip-NeRF 360. In this configura-
tion, we conduct experiments on the LLFF [39], Shiny [63],
and mip-NeRF 360 [4] datasets with the GNT training set-
tings as specified in [56]. We adopt the GPNR settings [54]
to sample every eighth frame in each category for testing.
Specifically, for LLFF [39], we evaluate on eight categories:
trex, fern, flower, leaves, room, fortress, horns, and orchids.
For Shiny [63], we test on eight categories: CD, crest, food,
giants, lab, pasta, seasoning, and tools. For mip-NeRF
360 [4], we test on seven categories that are available with-
out external restrictions: bicycle, bonsai, counter, garden,
kitchen, room, and stump.

(b) MVImgNet. The MVImgNet dataset [72] comprises
6.5 million frames from 219,188 videos across 238 classes,
making it infeasible to train on all sequences or categories.
We adhere to the official split and focus on the container
category, which includes category ID 0, 1, 14, 26, 28, 37,
39, 43, 48, 49, 83, 119, 145, and 160. We randomly subsam-
ple 2,500 training examples from the training set and select
108 sequences for the test set. Testing is conducted on the
first example of each sequence, using the remaining sam-
ples as reference views. We attach the list of scenes used
for training and inference to the supplementary material.

7. Additional Analysis

In this section, we present further analysis of CaesarNeRF,
as well as its comparison with other methods, including
diffusion-based and NeRF-based methods, along with more
experimental details.

Comparison with generative methods. Single-view
scenarios are frequently encountered in existing generative
methods [33, 34, 36] based on diffusion models [18, 50].
Although these models yield reasonable results for object-
centric rendering (focusing on one object at the center of
the image), they fall short in rendering scene-level exam-
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(a) leaves (b) orchid

Figure 6. Synthetic results for two examples from LLFF [39],
“leaves” and “orchid”, using zero 1-to-3 [33] with one reference
image as input and 2 degrees of vertical shift.

Method PSNR (↑) LPIPS (↓) SSIM (↑)
PixelNeRF [71] 18.66 0.463 0.588
MVSNeRF [6] 21.18 0.301 0.691
IBRNet [60] 25.17 0.200 0.813
NeuRay [35] 25.35 0.198 0.818
GeoNeRF [23] 25.44 0.180 0.839
ContraNeRF [68] 25.44 0.178 0.842
GPNR [54] 25.72 0.175 0.880
GNT [56] 25.65 0.140 0.853
Ours 25.17 0.137 0.852

Table 8. Generalizable results on LLFF [39] compared with state-
of-the-art methods using all reference views as input.

ples from novel viewpoints. Different from NeRF-based
approaches that reconstruct images based on observed pix-
els, generative models aim to synthesize an entire image
using its semantic representation, often without preserving
the style or intricate details of the original image.

We present two examples from the LLFF [39] dataset in
Figure 6 using zero 1-to-3 [33], shifting the input by 2 de-
grees vertically with its polar angle. When using zero 1-to-
3 to render a scene-level image from a novel camera pose,
the style of the prediction deviates significantly from the
original input, exhibiting smoothing artifacts characteristic
of the diffusion model. These diffusion-based methods of-
fer good semantic completeness and less ambiguous bound-
aries, but at the expense of sacrificing the original style of
the input images, which is not optimal for rendering.
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Metric Method trex fern flower leaves room fortress horns orchids

PSNR (↑)

LLFF [39] 27.48 28.72 20.72 21.13 24.54 21.79 23.22 18.52
NeRF [41] 26.80 25.17 27.40 20.92 32.70 31.16 27.45 20.36
NeX [63] 28.73 25.63 28.90 21.96 32.32 31.67 28.46 20.42
GNT [56] 28.15 24.31 27.32 22.57 32.96 32.28 29.62 20.67
Ours 28.30 25.63 28.29 23.11 32.21 32.47 29.56 21.52

LPIPS (↓)

LLFF [39] 0.222 0.247 0.174 0.216 0.155 0.173 0.193 0.313
NeRF [41] 0.249 0.280 0.219 0.316 0.178 0.171 0.263 0.321
NeX [63] 0.193 0.205 0.150 0.173 0.161 0.131 0.173 0.242
GNT [56] 0.080 0.116 0.092 0.109 0.060 0.061 0.076 0.153
Ours 0.076 0.111 0.068 0.095 0.057 0.055 0.071 0.139

SSIM (↑)

LLFF [39] 0.857 0.753 0.844 0.697 0.932 0.872 0.840 0.588
NeRF [41] 0.880 0.792 0.827 0.690 0.948 0.881 0.828 0.641
NeX [63] 0.953 0.887 0.933 0.832 0.975 0.952 0.937 0.765
GNT [56] 0.936 0.846 0.893 0.852 0.963 0.934 0.935 0.752
Ours 0.943 0.871 0.912 0.872 0.967 0.946 0.939 0.782

Table 9. Full table of evaluation for per-scene optimization for all eight categories on the LLFF [39] dataset comparing CaesarNeRF with
state-of-the-art methods.

Input GNT [56] output CaesarNeRF output Ground-truth

Figure 7. Visualization comparison of CaesarNeRF and GNT with the input frame using one reference view as input.

Generalizable Performance. Beyond few-view scenar-
ios, we further analyze cases with more views and present
these results in Table 8. When more views are available, our
model demonstrates similar performance compared with
other state-of-the-art methods, particularly GNT [56], our
baseline method. This indicates that CaesarNeRF can
match the performance of other state-of-the-art methods
when all views are available and exhibits better performance
when the number of input reference views is limited.

Per-scene Optimization on LLFF. We present detailed
results for per-scene optimization in Table 9. We com-
pare CaesarNeRF against the top-performing model from
Table 5, GNT [56], as well as other methods, LLFF [39],
NeX [63], and NeRF [41]. CaesarNeRF surpasses all other
methods across all categories for LPIPS. It also shows the

best performance in half of the LLFF dataset categories
in terms of PSNR and SSIM. CaesarNeRF outperforms
GNT [56], our baseline method, in all categories on three
metrics with consistent improvements.

Comparison with input views. To investigate how Cae-
sarNeRF handles a single reference view input, we present
two visualizations in Figure 7, using the first two examples
in Figure 1, “crest” and “lab” from the Shiny [63] dataset.
We present the input view for these two examples along
with the rendered results from GNT [56] and CaesarNeRF,
comparing them with the ground-truth.

For a single-view input, the difference between the in-
put and the target view can be decomposed into three parts:
affine transformation, changes in occlusions, and informa-
tion outside the image. CaesarNeRF can generate reason-
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Target Image GNT CaesarNeRF Target Image GNT CaesarNeRF

Figure 8. Depth estimation prediction using one reference view (first row) and two reference views (second row) as input from LLFF
comparing CaesarNeRF with GNT.

Source Image Smallest Distance 2nd Smallest Distance Largest Distance 2nd Largest Distance

fortress chesstable (0.45) colorfountain (0.50) fenceflower (1.91) pond (1.80)

fern playground (0.46) bikes (0.50) peppers (2.02) apples (2.01)

Figure 9. Largest and smallest distances for two examples from LLFF test split when matching with training scenes. Numbers (×10−2) in
the brackets are the L-2 distance to the source image.

able results for the affine transformation that is visible in
the input view. For different occlusions between the input
and target views, such as the center bottom of the first ex-
ample, where the base occludes more of the pillar in the
background in the rendered image compared with the input
view, CaesarNeRF can predict the occlusion correctly, in-
dicating it can handle the object relationships in the image
instead of treating the scene as a flat image. For areas not
captured in the input images, CaesarNeRF cannot provide
rendering results if there is a large patch missing. Addition-
ally, compared with large view shifts in the first example,
small shifts between the poses of the input and target views,
as in the second example, yield more accurate rendering.

Depth estimation. In addition to RGB image predic-
tions, we also explore depth prediction on the LLFF [39]
dataset, specifically in scenarios with few reference views,
such as one or two. We compare the performance of Cae-
sarNeRF and GNT [56] in Table 8. We find that GNT strug-
gles to accurately represent the relative positions of objects

within the scene when provided with few reference views.
For instance, in the flower case with just one view, CaesarN-
eRF accurately shows that the flower is closer to the camera
than the leaves in the background, whereas GNT doesn’t
show a distinguishable difference in depth prediction.

Furthermore, the depth estimations provided by Cae-
sarNeRF are more consistent. In the horn example involv-
ing two views, CaesarNeRF offers better boundary delin-
eation, particularly when confronted with reflective surfaces
like the glass in the background. While CaesarNeRF per-
forms well in capturing the relative depths within the scene,
it tends to predict the background as being farther from the
camera. The absolute depth values are not accurate enough
to resolve all ambiguities in the reconstructed depth, consti-
tuting a potential limitation that could be addressed in future
work, as discussed in Section 5.

Semantic analysis for S̃. As the averaged calibrated se-
mantic representation S̃ includes information from frames
across the same scene, we conduct further analysis to deter-
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mine if such a feature from the encoder indeed encompasses
semantic details about the scene. We use examples from the
LLFF test set [39] to match with LLFF training examples
and examine the highest and lowest response based on their
L-2 distance between features from two scenes. Since we
lack specific labels, the L-2 distance serves as an implicit
reflection of the similarity between two vectors. A smaller
distance indicates more similarity between them, and vice
versa. To extract the scene-level representation for each
scene, we consider the first image of each category in the
LLFF training and test sets as a reference image and apply
CaesarNeRF to extract the scene-level representation for the
nearest ten views surrounding the reference image.

We present two examples, “room” and “fortress”, ac-
companied by the first image of the category with the top-2
highest and lowest responses from the LLFF training set
in Figure 9. In extracting the scene-level representation,
the representation predominantly emphasizes structural in-
formation as well as certain similar object categories. For
instance, with the source image “room”, the highest re-
sponses align with table-like structures, and the scene is
mainly object-centric. Conversely, the lowest responses dis-
play images of flowers or a pond in open spaces, categories
not present in the source images. A similar observation ap-
plies to the second example, “fortress”, where the top two
responses reflect spiral structures like playground slides and
bicycle pegs. In contrast, the lowest two responses from the
LLFF training scenes originate from scenes with displayed
objects. It’s worth noting that color is not the paramount
factor for scene-level semantic representation. This is evi-
dent from the large yellow and dark patches in the last ex-
ample (pond) of the first row, which still has the second-
lowest response when matched with the source image.

8. Visualizations.
In this section, we provide more visualizations and analysis
on the fours datasets we used in our experiment. We present
two different variations, framewise results as attached to
this document, and the video results in the form of GIF files,
which are included in the supplementary material.

Framewise results. We provide more examples compar-
ing CaesarNeRF to GNT [56], our baseline method, as it has
outperformed other baseline methods in Table 1. We show
results on the LLFF [39] and Shiny [63] datasets in Fig-
ure 10 and on the mip-NeRF 360 [4] and MVImgNet [72]
datasets in Figure 11. For each dataset, we present two ex-
amples using 1, 2, and 3 views as input reference views.
We observe that with a limited number of input views, the
overall reconstruction quality is constrained, especially for
mip-NeRF 360 [4], where the differences between reference
and target camera views are substantial. Nevertheless, when
compared to GNT [56] across varying numbers of views,
CaesarNeRF consistently generates images with better ren-

dered quality, featuring sharper boundaries and fewer mis-
colored areas.

In addition to scenes with multiple objects, we also
present additional visualizations from the recently intro-
duced MVImgNet [72] dataset in Figure 12. These scenes
in the MVImgNet [72] dataset mostly focus on object-
centric scenarios, and we use just one reference view as in-
put as it is a simpler case. Different from scenes featuring
multiple object combinations and intricate geometrical rela-
tionships, the object-centric scenes in MVImgNet [72] pro-
vide enhanced quality with even a single input view for both
GNT [56] and our CaesarNeRF. CaesarNeRF markedly sur-
passes our baseline method, GNT [56].

We further present the results for different numbers of
views using CaesarNeRF in Figure 13. When the num-
ber of views exceeds 2, the overall quality of the recon-
structed images remains consistent for CaesarNeRF, result-
ing in high-quality outcomes as evident in Table 4. In sce-
narios where the scene is object-centric with a straightfor-
ward background, CaesarNeRF excels with relatively fewer
input views, maintaining its high quality across different
numbers of images used as reference views.

Video results. Along with the framewise rendering, we
also include rendered videos in the form of GIF files along
with this document in the supplementary material. As we
have focused on generalizable rendering with one or two
reference views in framewise reconstructions, for video ren-
dering, we provide examples for two other cases, including
the rendering results with three reference views for general-
izable rendering and per-scene optimization.

For the generalizable setting with three reference views,
we have selected four scenes from LLFF with high-
frequency pattern changes, including “flower”, “horns”,
“leaves”, and “orchids”. We compare CaesarNeRF with its
baseline, GNT [56]. When the input views are limited but
sufficient, GNT exhibits more inconsistent fragments, such
as the boundaries of leaves and flowers. In contrast, our pro-
posed CaesarNeRF demonstrates more consistent bound-
aries with the introduction of calibrated semantic represen-
tation across views, enabling a holistic understanding.

For per-scene optimization, we present an example in-
volving “orchids”, comparing CaesarNeRF with GNT [56].
GNT primarily focuses on pixel-level rendering and lacks a
holistic scene-level understanding. Consequently, the over-
all illumination across different viewpoints changes consis-
tently in GNT, while CaesarNeRF produces a more con-
sistent rendering. Additionally, we observe that in two
patches we cropped out, GNT generates inconsistent struc-
tures across different views, whereas our rendering results
remain more stable.
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(a) Visualization on leaves category on LLFF.
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(b) Visualization on room category on LLFF.
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(c) Visualization on lab category on Shiny.
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(d) Visualization on CD category on Shiny.

Figure 10. Additional Visualizations on LLFF [39] and Shiny [63] datasets when using 1, 2 and 3 reference views as input comparing ours
with GNT [56].
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(a) Visualization on kitchen category on mip-NeRF 360.
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(b) Visualization on room category on mip-NeRF 360.
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(c) Visualization on container category on MVImgNet.
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(d) Visualization on container category on MVImgNet.

Figure 11. Additional Visualizations on mip-NeRF 360 [4] and MVImgNet [72] datasets when using 1, 2 and 3 reference views as input
comparing our proposed method, CaesarNeRF, with our baseline, GNT [56].
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(a) GNT (b) Ours (c) Groundtruth (a) GNT (b) Ours (c) Groundtruth

Figure 12. Visualization for one reference view input comparing GNT [56] with CaesarNeRF on MVImgNet [72].
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(a) 1-view (b) 2-view (c) 3-view (d) 4-view (e) 5-view (f) Groundtruth

Figure 13. Visualization for different numbers of reference views with CaesarNeRF on MVImgNet [72].
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